

Debug Your Embedded Design More Quickly

August 19th, 2003

presented by:

Mike Beyers Oscilloscopes Project Manager

© Copyright 2003 Agilent Technologies, Inc.

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

Trends in Embedded Systems - Past

- 20 Years ago each embedded processor system was a unique design.
- The processor had no internal memory or IO control.
- Therefore memory and IO control was kept relatively simple.
- Digital signals were easily probed with a four channel analog oscilloscope.

Trends in Embedded Systems - Today

- Today, processors and FPGAs can include complex memory and IO control systems.
- Technologies like SDRAM for memory and PCI for IO have migrated from high-end computers to mid-range embedded systems in only a handful of years.
- The modern embedded system designer will need a variety of tools when debugging these more complex systems.

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

SDRAM Control Signals.

- Need to view 5 digital signals to identify/trigger on a particular cycle - the three to the right plus chip select and Clock.
- Need to look at least clock and another line (address, data or control) with analog channels to verify timing and signal integrity.
- Operation is pipelined.

SDRAM Commands

Command	RASN	CASN	WEN
No Operation (NOP)	Н	Н	Н
Active (ACT)	L	Н	Н
Read (RD)	Н	L	Н
Write (WR)	Н	L	L
Burst Terminate (BT)	Н	Н	L
Precharge (PCH)	L	Н	L
Autorefresh (ARF)	L	L	Н
Load Mode Register (LMR)	L	L	L

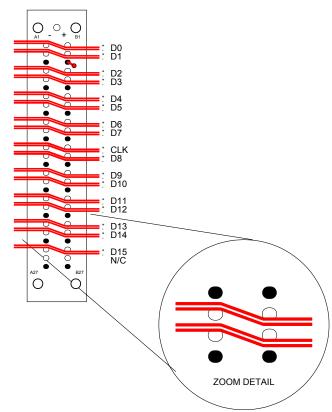
PCI Control Signals.

- PCI is a very complex protocol. The PCI bus specification is 322 pages!
 But it is commonly used and cheap to implement..
- Besides the 4 command lines, there are 6 control lines (FRAME#, TRDY#, IRDY#, STOP#, DEVSEL# and IDSEL), 2 error signals, 2 arbitration signals, and a clock and reset line.

PCI Commands

C/BE[3:0]# Command Types

- 0000Interrupt Acknowledge0001Special Cycle
- 0010 I/O Read
- 0011 I/O Write
- 0100 Reserved
- 0101 Reserved
- 0110 Memory Read
- 0111 Memory Write
- 1000 Reserved
- 1001 Reserved

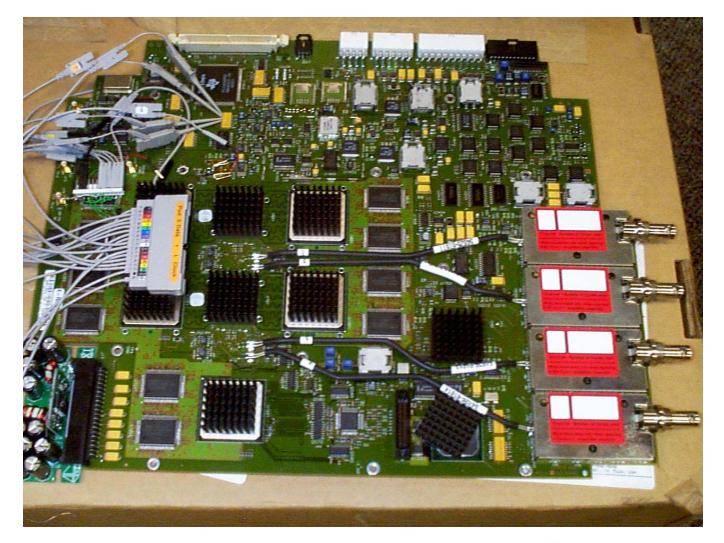

1110

- 1010 Configuration Read
- 1011 Configuration Write
- 1100 Memory Read Multiple
- 1101 Dual Address Cycle
 - Memory Read Line
- 1111 Memory Write and Invalidate

Hint #1: Add LA Connector Footprints

The user puts down a 'landing pattern' on the target system.
 The connector-less probe is then attached to the system with a 'retention module'

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References



Hint #2, 3, 4: Start with Raw Board

- Hint #2: Check for ground and power plane shorts with DMM. Check loaded board too!
- Hint #3: Check R across power planes and calculate expected IR loss.
- Hint #4: Check controlled impedance lines with TDR. Concentrate on Clock traces, as they are most sensitive in syncronous systems like SDRAM and PCI.

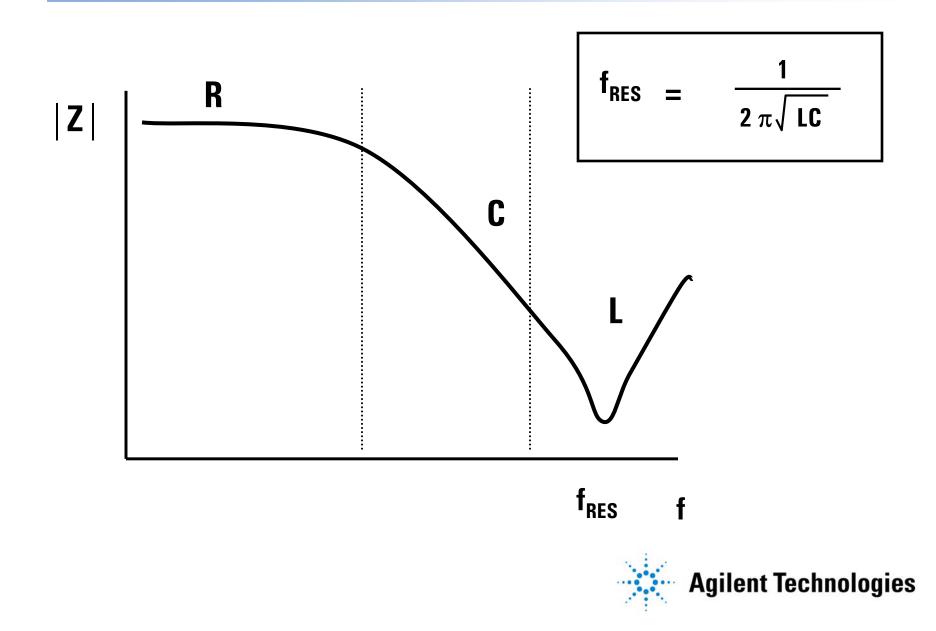
Loaded Board Turn-On

Hint #5: Check Supplies with Scope

- Use Scope instead of DMM see noise and dynamic loading issues. Modern CMOS devices can load down a PS when they come out of reset or do a burst of memory or IO accesses.
- Re-check supplies once everything is working. Power consumption is dependent on operation.
- Check with current probe if supply droops.

Hint #6: Check PS Sequencing

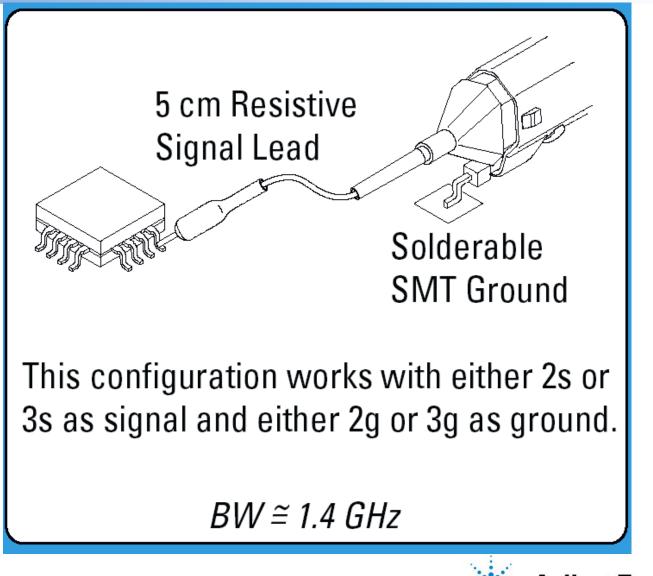
- Modern IC's often use several different supply voltages - for core and IO.
- Follow manufacturer's recommendation (On and Off!).
- Consider distributed power with DC-DC conversion off one rail. Soft start options allow control of power supply sequencing.
- Rule of thumb bring all supplies up together if no manufacturer's recommendation.



Next Step - Look for Clocks.

- Clocks will normally be your highest speed signals.
- Edge rates are probably 1ns or less.
- BW_{Signal} ~= 0.5 / risetime.
- Hint #7: BW_{Measurement} needed = 1 / risetime for ~5% error. (1ns risetime = 1GHz). Remember, BW_{Measurement} is often limited by BW_{Accessories}!

Consider Probe Loading


Hint #8: Use 1nH/mm to Estimate f_{RES}

1156A Active Probe w/5cm signal lead Input C = 0.8pF L = 50nH f_{RES} = ~850MHz

1165A Passive Probe w/10cm ground lead Input C = 9pF L = 100nH f_{RES} = ~167MHz

1156A Recommended Configurations

Hint #9: Check Loading with 2 Probes

Agilent Technologies

- Hint #10: Always probe clocks at receiver.
- Hint #11: Probe LVDS clocks differentially (Zero crossing most important).
- Hint #12: Trigger on slowest clock when looking at divided clocks.
- Hint #13: Clock Layout: Avoid vias, split ground and power planes, and sharp corners. Layout power first, clocks next, then everything else.
- Hint #14: Recheck clocks after everything is turned on. May uncover data dependant coupling!

Next Challenge - The Memory System

Hint #15: Start off checking for Refresh.

	Pattern/State Trigger Setup
Command	Reset Pattern Close 1 0 × Help ▶?
No Operation (NOP) Active (ACT)	2 3 4 D15 D14 D13 D12 D11 D10 D8 D8 D1 D6 D5 D4 D2 D1 6 SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Read (RD)	Pattern in Hex \$XX2 Thresholds
Write (WR)	Digital Bus Pattern Bus 1 Pattern in Hex X2
Burst Terminate (BT Precharge (PCH)	Bus 2 Pattern in Hex 🔀
Autorefresh (ARF)	
Load Mode Register (L.	

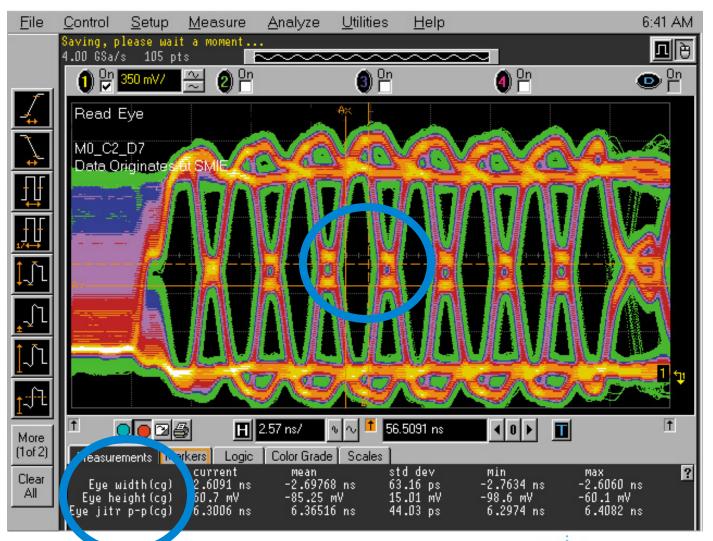
Hint #16: Isolate a Single Cycle

- Use special firmware or HDL to generate a continuous stream of just writes, then just reads.
- Vary data: All 1's, all 0's, checkerboards, to get more transistions.
- Look for illegal logic levels, setup/hold violations.
 Check direction control on buffers.
- Check many address and data lines. Note worst ones (timing and signal integrity) for future work.

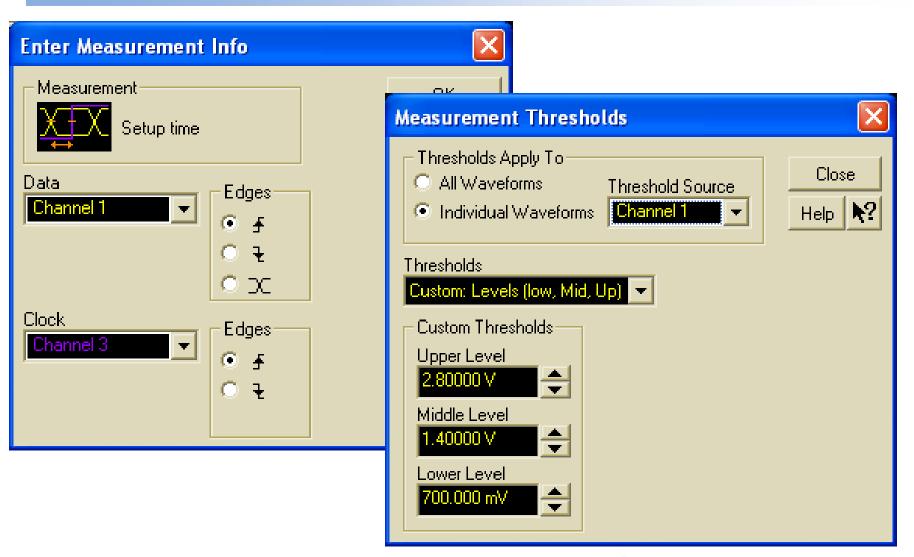
Hint #17: Probe the Right End

Probe address and data writes at memory.

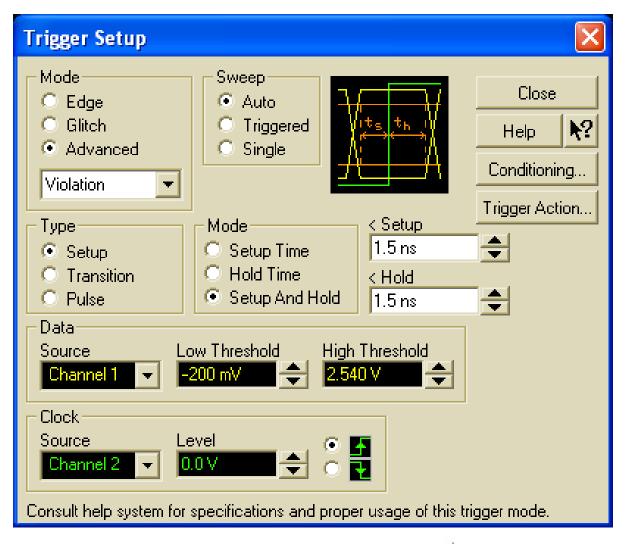
- Probe data reads at controller.
- Probe clocks at memory.



Hint #18: Pattern Trigger Isolates Cycles



DDR SDRAM Burst Read Example



Hint #19: Use Custom Thresholds

Hint #20: Use Violation Triggering

Hint #21: Read the Fine Print

- Some vendors specify minimum risetime.
- Some specifications are functions of risetime.
- Some vendors specify N refreshes before use.
- Look for clock output R. Series terminate clocks with R_{term} = R_{line} - R_{source}.
- Vary temperature if margin is small. Specs are tighter than they used to be!
- Verify revision of specification = revision of silicon.

Hint #22: Recheck Clocks and Refresh

- After system is up and running recheck clock signal integrity and worse case setup/hold lines. Look for data dependant problems.
- Also check refresh cycles. Sometimes controllers refresh fine with little memory activity but can leave out refresh as memory traffic increases.

PCI Bus turn on hints

- Again, clocks are most critical. Clocks are point to point - series terminated.
- Hint #23: Give clock traces more space even if you have to squeeze AD and control.
- Hint #24: Length dictates speed (33MHz or 66MHz) and minimizes timing margin. Do not approach length limits unless absolutely necessary.

Pause for Q&A

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

Example: PCI Bus Intermittent Lockup

Acquisition Board of 54832D

Has 125MHz SDRAM for memory and 33MHz PCI bus for communication between ASICs and Host PC.

SDRAM worked fine. PCI bus had problems that threatened to delay shipments.

Team did not plan ahead no logic analyzer connectors for PCI bus on acquisition board.

Agilent Technologies

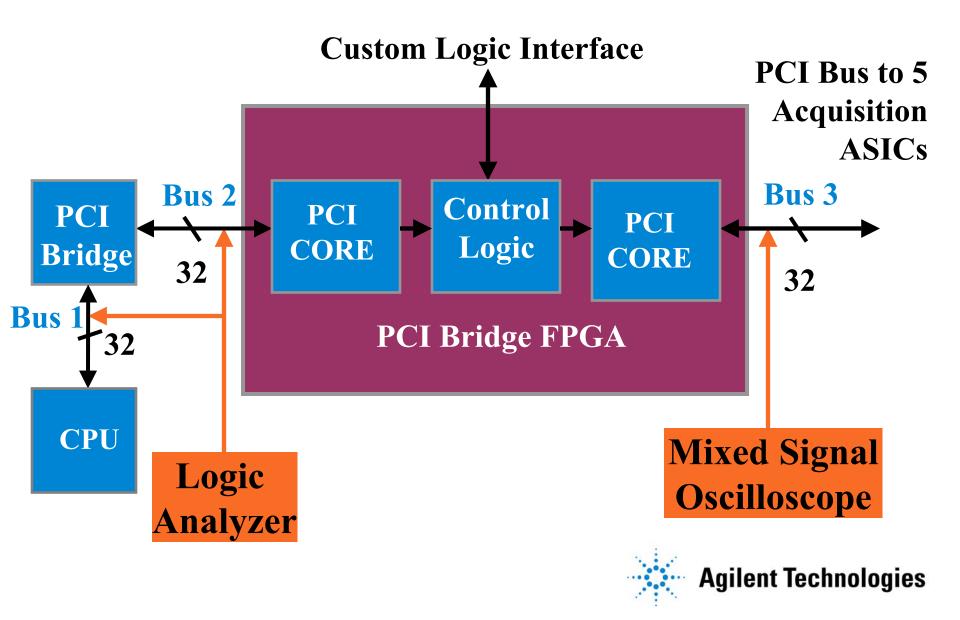
Situation & Challenges

- The problem happened very occasionally, and only on a few units.
- They had no idea where the write was going astray.
- They could easily hook up to Bus 1 (Backplane) and with some effort hook up to Bus 2 (Ribbon Cable), but found it nearly impossible to hook up to Bus 3 (SMT to BGA routing).

Hint #23: Break It Before You Fix It

- Look for units that fail most often.
- Modify firmware/HDL to fail more often.
- Vary temperature to fail more often.
- Duplicate failure in simulation.

Hint #24: Functional or Parametric?


Functional	Either	Parametric
Duplicates in	Caused by	Observed with
Simulation	Temperature	Scope

Observed with Varies with Logic Analyzer Code or HDL or Debugger

> Follows Board or Chip

Debug Environment

Logic Analyzer Isolates Fault

1.	le Window		ons Invas	smi Source	, 1			Hel
	Time Relative	Command Text	Address_L Hex	Data_L Text	Termination Text	Latency Hex	Efficiency % Decimal	Mbytes/sec Decimal
	88.000 ns		00000CF8	80003B08	Initiator	03	025	0045
	1.176 us 176.000 ns 2.792 us	Cfg Read I/O Write	00040308	******01	Initiator	06	014	0005
	88.000 ns	1/0 0/108	00000CF8	80003B40	Initiator	03	025	0045
	1.176 us 176.000 ns 3.600 us	Cfg Read I/O Write	00040340	xxxx8001	Initiator	05	016	0011
2	240.000 us 240.000 ns 90.808 us		00008005	xxxx20xx	Initiator	08	011	0004
-	24.000 ns	0000 090	00120002	00120002		08		
	96.000 ns				Mstr Abort	06	016	0000
	1.751 s 3.096 us 88.000 ns	Mem Read Mem Read	FFFFFF0	F526FF2E	Initiator		000	0001
	3.088 us 88.000 ns	Mem Read	FFFFFFF4	00C01BFF	Initiator		000	0001
	3.096 us 88.000 ns	Mem Read	FFFFFF8	00C01DEA	Initiator	65	000	0001
	3.088 us 96.000 ns	Mem Read	FFFFFFC	FC0000F0	Initiator	65	000	0001
	3.088 us	Mem Read	FFFFFEO	00000000	Initiator		000	0001

MSO Finds Root Cause

Analog channels see isolated clock coupling

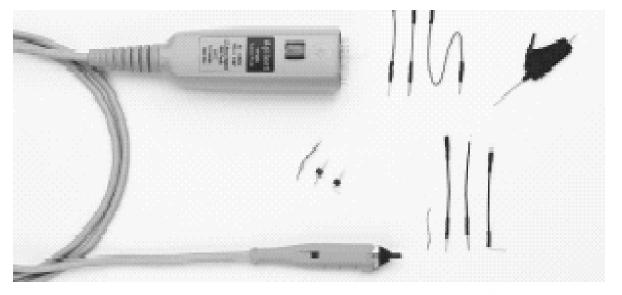
Digital channels provide state trigger on first address phase after a bus turnaround

Agilent Technologies

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

34401A 6 1/2 Digit DMM

- \$1,163
- Accurate
- Fast
- Easy to Read
- Reliable


For more information on the 33401 Digital Multimeter, and other low-cost benchtop instruments,

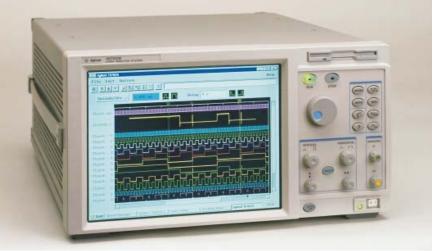
visit www.agilent.com/find/everydaytools

1156A 1.5GHz Active Probe


- \$1,866
- Damped Accessories for Minimized Loading
- Small Size
- Documented BW for Recommended Accessories

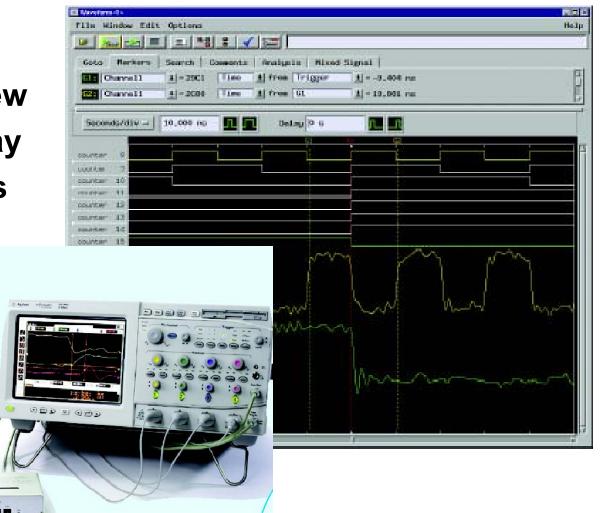
Agilent Infiniium MSOs

- \$17K \$25K
- 600MHz and 1GHz
- 2+16 and 4+16 channel models
- MegaZoom Deep Memory
- 2M/channel Standard
- 8M/channel Optional
- http://www.agilent.com/ find/mso



Agilent Logic Analyzer Family

- Modular, Standalone and PC Hosted models
- Wide variety of speed and channel count configurations
- Wide variety of probing solutions
- http://www.agilent.com/ find/logic



Agilent Technologies

E5850A Time Correlation Fixture

- Automatic Deskew
- Combined Display
- Tracking Markers

ALLING S

- Trends in Embedded Systems
- SDRAM and PCI Overview
- Turn on Process Recommendations
- "Late in the Game" Debug Process Recommendations
- Recommended Agilent Products
- Additional References

Recommended App Notes

- Debugging a PCI Bus with a Mixed-Signal Oscilloscope - Pub # 5988-7745EN
- Customer Validates Signal Integrity on 100 MHz DDR SDRAM With Mixed-Signal Oscilloscope - Pub # 5988-9265EN
- The Truth About the Fidelity of High-Bandwidth Voltage Probes - Pub # 5988-6515EN
- http://www.measurement.tm.agilent.com/n ew/category704.html

- Johnson, Howard W., High Speed Digital Design: A Handbook of Black Magic, Prentice Hall, 1993
- Witte, Robert A., *Electronic Test Instruments,* Prentice Hall, 1993
- Ganssle, Jack, The Art of Designing Embedded Systems, Newnes, 2000

Thank You For Attending

Debug Your Embedded System More Quickly

